Introduction

Inheritance Concept

Inheritance Concept

class Rectangle{

Po |ygon private:

int num\ertices;
float *xCoord, *yCoord;

public:
void set(float *x, float *y, int nV);

float area();

&
class Polygon{ class Triangle{
private: private:
Int numVertices; int num\Vertices;
float *xCoord, *yCoord; float *xCoord, *yCoord,;
public: public:
void set(float *x, float *y, int n\V); void set(float *x, float *y, int nV);
1: float area();

j

Inheritance Concept

Polygon

/

class Rectangle : public Polygon{
public:
float area();

};

class Polygon{
protected:
int num\ertices;
float *xCoord, float *yCoord,
public:
void set(float *x, float *y, int nV);

¥

class Rectangle{
protected:
int num\ertices;
float *xCoord, float *yCoord,;
public:
void set(float *x, float *y, int nV);
float area();

Inheritance Concept

class Polygon{
POlngﬂ protected:

int num\ertices;

float *xCoord, float *yCoord,
public:
void set(float *x, float *y, int nV);

class Triangle{

protected:
class Triangle : public Polygon{ int numVertices;
public: float *xCoord, float *yCoord;
float area(); = public:
T void set(float *x, float *y, int nV);

float area();

}

Inheritance Concept

Point

/ \

Circle 3D-Point

X

X

y
r

X

y
V4

class Circle : public Point{

private:
double r;

class Point{
protected:
Int X, y;
public:
void set (int a, int b);

};

class 3D-Point: public Point{
private:
int z;

Inheritance Concept

« Augmenting the original class

Polygon

‘o s

 Specializing the original class

[ComplexNumber J real
W imag

real

[RealNumber } [ImaginaryNumber} imag

Why Inheritance ?

Inheritance Is a mechanism for
* building class types from existing class types

* defining new class types to be a
—specialization
—augmentation

of existing types

Define a Class Hierarchy

e Syntax:

class DerivedClassName : access-level BaseClassName

where
— access-level specifies the type of derivation
* private by default, or
* public
* Any class can serve as a base class
— Thus a derived class can also be a base class

Class Derivation

Point class Point{
‘ protected:
Int X, y;
3D-Point oublic:
Y void set (int a, int b);
Sphere 4
class 3D-Point : public Point{ class Sphere : public 3D-Point{
private: private:
double z; double r;
Jr ¥

Point is the base class of 3D-Point, while 3D-Point is the base class of Spheye

What to inherit?

* In principle, every member of a base class Is
Inherited by a derived class

— Just with different access permission

10

Access Control Over the Members

e Two levels of access control

base class/ superclass/ over class members
parent class — class definition
£ — Inheritance type
y class Point{
£ protected: int X, y;
: public: void set(int a, int b);
derived class/ subclass/ g
child class class Circle : public Point{

Access Rights of Derived Classes

Type of Inheritance

o private protected public
= (@) -

=z 3 | private - - -

S O | protected | private protected | protected
® S

3 | public private protected public

» The type of inheritance defines the access level for the
members of derived class that are inherited from the base
class

12

class mother{

Class Derivation

class grandDaughter : public daughter {

protected: int mProc; private: double gPriv;
public: int mPubl; public: void gFoo ();
private: int mPriv; }:

g
private/protected/public int main() {

class daughter : --------- mother{ %)
private: double dPriv; 1

public: void dFoo ();

};

void daughter :: dFoo (){
mPriv = 10; //error

mProc = 20;

¥

13

What to inherit?

* In principle, every member of a base class Is
Inherited by a derived class
— Just with different access permission

» However, there are exceptions for
— constructor and destructor
— operator=() member
— friends

Since all these functions are class-specific

14

Constructor Rules for Derived Classes

The default constructor and the destructor of the
base class are always called when a new object
of a derived class Is created or destroyed.

class A { class B : public A
public: {
A() public:
{cout<< “A:default”<<endl;} B (int a)
A (int a) {cout<<“B”<<endl;}
{cout<<*“A:parameter’<<endl;} };
I

output: -~ A-default
B test(1); B

15

Constructor Rules for Derived Classes

You can also specify an constructor of the
base class other than the default constructor

DerivedClassCon (derivedClass args) : BaseClassCon (baseClass
args)
{ DerivedClass constructor body }

class A { class C : public A {
public: public:
A() C (inta) : A(@)
{cout<< “A:default”<<endl;} {cout<<“C”<<endl;}
A (int a) }:

{cout<<*A:parameter’<<endl;}

output: A:parameter
C test(1); C

16

Define its Own Members

The derived class can also define
its own members, in addition to
the members inherited from the
base class

- X
Point v

y | Circle

'

class Circle : public Point{
private:
double r;
public:
void set_r(double c);

class Point{
protected:
Int X, y;
public:
void set(int a, int b);

};

class Circle{

protected:
Int X, y;

private:
doubler;

public:
void set(int a, int b);
void set_r(double c¢);

Even more ...

» A derived class can override methods defined in its parent

class. With overriding,

— the method in the subclass has the identical signature to the method
In the base class.

— asubclass implements its own version of a base class method.

class A { :
orotected: class B : public A {
int x, y: public:
oublic: void print ()
voidprint() -—----=-=---""7"7" {cout<<*From B”<<endl;}
{cout<<*“From A”<<endl;} s

18

Access a Method

class Point{
class Circle : public Point{

protected: _
int x, - private: doubler;
public: public:
void set(int a, int b) void set (int a, int b, double c) {
{x=a; y:t’)'} Point :: set(a, b); //same name function call
void foo (); r=c

}

void print(); void print(); };

¥
Circle C;
Point A; C.set(10,10,100); // from class Circle
A.set(30,50); // from base class Point C.foo (); // from base class Point

A.print(); // from base class Point C.print(); // from class Circle

19

